
Introduction Tasks & Inequalities Automation & Augmentation Superstar firms Conclusions

Implications of Technology on Wages,
Factor Shares and Inequalities across
Demographic Groups in the European

Labor Market

Tomáš Oleš

April 16, 2024



Introduction Tasks & Inequalities Automation & Augmentation Superstar firms Conclusions

Labor share decline

Two compelling hypotheses:
▶ Automation (Acemoglu and Restrepo, 2018a, 2022)
▶ Increasing market concentration (Autor et al., 2017, 2020)

Other hypotheses:
▶ Offshoring (Feenstra and Hanson, 1999)
▶ Compositional factors (Fortin and Lemieux, 1997)
▶ Extensive capital accumulation (Piketty and Zucman, 2014)
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A: Labor share decline in the US
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B: Percentage Hourly Earnings Gap between College and 
High-School Workers in the US
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C: Automation related patenting activities in the US

Figure displays labor share decline, increase in the skill premium of college to high school workers, and
the increase of patents share that are classified as automation ones. The US economy 1960-2012.
Source: Authors’ illustration based on Feenstra et al. (2015)’s (Panel A); Autor (2014)’s (Panel B);
Mann and Püttmann (2018)’s (Panel C) data.
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Aims of the dissertation

▶ First Aim: Empirically investigate the impact of automation
within the task-based framework in France and Germany,
building on the framework created by Acemoglu and Restrepo
(2022).

▶ Second Aim: Explore both effects of labor-automation and
labor-augmentation technologies simultaneously in the
European labor market, filling the gap left by existing research
predominantly centered around the US (Autor et al., 2022).

▶ Third Aim: Examine the implications of increasing market
concentration on labor share, productivity, and wages,
particularly focusing on ’old’ European countries and superstar
firms (Autor et al., 2017, 2020).
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Structure of the dissertation

Tasks, Automation, and Inequalities in France and Germany

Impact of Automation and Augmentation Technologies on Employment

Digitalization, Superstar Firms, and Labor Dynamics
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Tasks, Automation, and Inequalities in
France and Germany
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Motivation

▶ Inequalities over last five decades surged, predominantly caused
by negative shift towards labor (Acemoglu and Restrepo, 2022)

▶ Technological change is the most plausible explanation:
▶ Skill-biased technological change (Goldin and Katz, 2009)
▶ Task-polarization model (Acemoglu and Restrepo, 2022)

▶ In the US, the changes in automation technologies can explain
50-70% of the change in wage structure (Acemoglu and
Restrepo, 2022)

▶ Have automation technologies in Europe caused labor market
polarization as in the US?
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Some consequences for wages
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Composition adjusted real wages for full-time workers, women, in France and Germany, Source: FQP
survey (wave 1977, 1985, 1993, 2003, 2015) and SIAB (Version 7521 v1).
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Some consequences for wage distributions
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Task-polarization model
Y =

(∫ N
N−1 y(i)

λ−1
λ di

) λ
λ−1

Cost of production

Task
index, i

R
AKγK (i)

I

W
ALγL(i)

Allocated to Capital Allocated to Labor

NN − 1

Equilibrium allocation of tasks to capital and labor in production based on the Acemoglu and Restrepo
(2018b) and Acemoglu and Restrepo (2020).
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Automation in task-polarization model

d lnwg =
1
λ
d ln y+

1
λ

∑
i∈I

ωi
g ·d ln ζi+

λ− 1
λ

d ln Ãg−
1
λ

∑
i∈I

ωi
g ·d ln Γautogi

Cost of production

Task
index, i

R
AKγK (i)

I

W
ALγL(i)

Allocated to Capital Allocated to Labor

NN − 1 I ′

"Automation technologies"

Equilibrium allocation of tasks to capital and labor in production based on the Acemoglu and Restrepo
(2018b) and Acemoglu and Restrepo (2020).
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Empirical evidence on the race between the man and
machine
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Authors’ illustration based on Hötte et al. (2022)’s meta-analysis

Results systematically differ at firm-level and industry-level (Guarascio et al.,
2024; Jurkat et al., 2023).
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Data technology side and labor share

▶ EU-KLEMS database:
▶ Covers 33 industries from 1985 to 2015.
▶ Includes labor share, value added, and employment data.

▶ Complemented with US industry-level technology proxies from
Acemoglu and Restrepo (2022):
▶ Average change in dedicated machinery and software (orig.

BEA).
▶ Adjusted penetration of robots (orig IFR).
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Data workers side: France

▶ Institut National de la Statistique et des Études Économiques
(INSEE)

▶ (i.) Formation Qualification Professionnelle (FQP) and (ii.)
Survey and Enquête Emploi (EE, EEC):
▶ Period (i.): 1977, 1985, 2003, 2014-2015.
▶ Period (ii.): 1977-2015.
▶ Demographic Groups: 60.

▶ Demographic groups characteristics:
▶ Gender.
▶ Age: Three age cells.
▶ Education: Four education cells.
▶ Nationality: Four consistent nationality cells (French,

European, African, and others).

▶ Occupational routine task intensities (RTI) are taken from
Mihaylov and Tijdens (2019).
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Data workers side: Germany

▶ Institut für Arbeitsmarkt und Berufsforschung (IAB)
▶ Sample of Integrated Market Biographies (SIAB) and auxiliary

Employment History Data (BEH):
▶ Period (ii.): 1985-2016.
▶ Demographic Groups: 132.

▶ Demographic groups characteristics:
▶ Gender.
▶ Grouped education into five education cells.
▶ Grouped nationality into four groups (Germans, Western

Europeans, Eastern Europeans, and others).
▶ Grouped age into five age cells.

▶ Occupational routine task intensities (RTI) are taken from
Dengler et al. (2014).
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Acemoglu and Restrepo (2022)’s link of automation to wage
changes

d lnwg =
1
λ
d ln y+

1
λ

∑
i∈I

ωi
g ·d ln ζi+

λ− 1
λ

d ln Ãg−
1
λ

∑
i∈I

ωi
g ·d ln Γautogi

Empirical mapping:
▶ The common expansion of output, d ln y , will be absorbed by the

constant term.
▶ The industry shifters term

∑
i∈I ωi

g · d ln ζi will be parametrized by group
g ’s exposure to changes in industry (log) value added shares.

▶ The third term, d ln Ãg , will be parametrized as in the SBTC literature.
Assuming:

λ− 1
λ

d ln Ãg = αedu(g) + γgender(g) + υg

where υg is an unobserved component, and αedu(g) and γgender(g) will be
absorbed by the dummies for education levels and gender.

▶ The key explanatory variable is a measure of direct task displacement
driven by the advances in automation technologies,

∑
i∈I ωi

g · d ln Γauto
gi .
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Task displacement parametrization

Task displacementc,direct
g =

∑
i∈I

ωgic ·
ωR
gic

ωR
ic

·
(
−d ln sL,auto

i

)
▶ ωgic , is the share of wages earned by group g workers in

industry i and country c relative to their total earnings.

▶
ωR
gic

ωR
ic

is the share of wages earned in routine occupations by
group g , industry i , and country c relative to all wages earned
in routine occupations in industry i and country c .

▶ −d ln sL,auto
i is the automation drive labor share decline
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Percent decline  industry's labor share, 1985-2015
France

Percent decline in industry labor shares (in blue/dark) and automation-driven labor share decline (in
orange/light), 1985-2015. Source: Author’s elaboration based on data from the EU-KLEMS and
Acemoglu and Restrepo (2022) databases.



Introduction Tasks & Inequalities Automation & Augmentation Superstar firms Conclusions

-40

-30

-20

-10

0

10

20

30

ch
an

ge
 la

bo
r s

ha
re

 (%
)

0 1 2 3 4 5

Log of one plus adjusted penetration
of robots

A. Labor share and robot
adoption, 1985-2015

-40

-30

-20

-10

0

10

20

30

40

ch
an

ge
 la

bo
r s

ha
re

 (%
)

-10 -5 0 5 10 15

Change in share of specialized software services services services
and dedicated machinery services

B. Labor share and specialized software
and dedicated machinery, 1985-2015

-40

-30

-20

-10

0

10

20

30

40

ch
an

ge
 la

bo
r s

ha
re

 (%
)

0 5 10

Automation-driven declines
in industry labor shares (%)

C. Labor share and automation
driven-declines, 1985-2015

France

Relationship between automation technologies and changes in industry labor shares, France, 1985-2015.
Source: Author’s elaboration based on data from the EU-KLEMS and Acemoglu and Restrepo (2022)
databases.
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Change in hourly wages Change in employment-to-population
1985-2015 1985-2015

Panel A

Task displacement -0.001 -0.072
(0.005) (0.045)

Exposure to industry change in value added 0.047 0.124
(0.071) (0.212)

Industry shifters -25.089*** 3.439
( 8.658) (29.094)

Education, gender dummies ✓ ✓
N 60 60
R2 0.288 0.271

Panel B

Task displacement -0.031 -1.368*
(0.105) (0.787)

Exposure to industry change in value added 0.047 0.129
(0.071) (0.212)

Industry shifters -25.089*** 3.317
( 8.658) (29.12)

Education, gender dummies ✓ ✓
N 60 60
R2 0.288 0.272

Task displacement and changes in real hourly wages and employment-to-population ratio, France, 1985-2015. Panel A reports
results for parametrized measure of task displacement based on observed labor share declines. Panel B reports results for
parametrized measure of task displacement based on automation-driven labor share declines based on the US’ technological frontier.
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Percent decline  industry's labor share, 1985-2015
Germany

Percent decline in industry labor shares (in blue/dark) and automation-driven labor share decline (in
orange/light), 1985-2015. Source: Authors’ elaboration based on data from the EU-KLEMS and
Acemoglu and Restrepo (2022) databases.
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Restrepo (2022) databases.



Introduction Tasks & Inequalities Automation & Augmentation Superstar firms Conclusions

Change in hourly wages and task displacement measure, constructed base on the US automation
frontier, 1985-2015. Source: Authors’ elaboration based on SIAB (Version 7521 v1), EU-KLEMS,
Acemoglu and Restrepo (2022)’s databases.
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Change in employment-to-population ratio and task displacement measure, constructed base on the US
automation frontier, 1985-2015. Source: Authors’ elaboration based on SIAB (Version 7521 v1),
EU-KLEMS, Acemoglu and Restrepo (2022)’s databases.
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Change in hourly wages Change in employment-to-population
1985-2015 1985-2015

Panel A

Task displacement 0.774 1.046
(0.629) (5.723)

Exposure to industry change in value added -0.825 417.531
(86.979) (528.861)

Industry shifters 2.461 2.992
(4.889) (26.630)

Education, gender dummies ✓ ✓
N 132 132
R2 0.486 0.617

Panel B

Task displacement 0.336 -3.020
(0.528) (3.491)

Exposure to industry change in value added -44.979 148.951
(67.997) (495.223)

Industry shifters 0.571 (0.615)
(4.216) (26.487)

Education, gender dummies ✓ ✓
N 132 132
R2 0.482 0.622

Task displacement and changes in real hourly wages and employment-to-population ratio, Germany, 1985-2015. Panel A reports
results for parametrized measure of task displacement based on observed labor share declines. Panel B reports results for
parametrized measure of task displacement based on automation-driven labor share declines based on the US technological frontier.
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Impact of Automation and Augmentation
Technologies on Employment in Europe
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Motivation

▶ Automation may disrupt labor markets:
▶ Displacement (automation) effect
▶ Reinstatement (augmentation) effect

▶ The net effect on employment is an empirical question (Arntz
et al. (2019))

▶ We stand on the shoulders of giants (literally):
▶ Literature considering both effects simultaneously is scarce

(Autor et al. (2022))
▶ Europe is not in the scope of interest. Why?

...by applying existing ideas not transferring previous results to
the European context.
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The ideas

▶ Automation (displacing) technologies are those that replace
input of job tasks (Autor et al. (2022)).

▶ Augmentation (reinstating) technologies are those that
improve the capabilities, quality, or utility of the output of
occupations (Autor et al. (2022)).

▶ Different technologies (robots, software, and AI) have a
different impact on employment caused by different exposure
caused by the different nature of these technologies (Webb

(2019)). Lebelling keywords.
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Implementation

▶ We identify what tasks humans and technology perform
...and measure to what extent these input tasks overlap
(automation).

▶ We identify what is the final output that technology
potentially complements
... and measure how the final output and technology are
’close’ to each other (augmentation).
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What labor is actually doing?

Weawing and Kitting Machine
Operators - Unit Group 8152
ISCO 08: Setting up and
operating batteries of automatic,
link-type knitting machines to
knit garments of specified pattern
and design, Threading yarn,
thread and fabric through guides,
needles and rollers of machines
for weaving, knitting or other
processing...

Electrical Engineers - Unit
Group 2151 ISCO 08: Advising
on and designing power stations
and systems which generate,
transmit and distribute electrical
power, Supervising, controlling
and monitoring the operation of
electrical generation, transmission
and distribution systems,
Advising on and designing
systems for electrical motors,
electrical traction...
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Data

▶ On the technology side: Google Patents Public database
▶ On the workers side: Description of task in the cleaned

description of tasks based on ISCO-08 by Mihaylov and
Tijdens (2019) and occupational microtitles by Tijdens (2023)
and merged EU-LFS since 1993 to 2017 for Germany, the
United Kingdom, France, Italy, and Spain
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Occupational tasks of Weawing and Kitting Machine Operators

Setting

VERB

up

ADP

and

CCONJ

operating

VERB

knitting

NOUN

machines

NOUN

to

ADP

knit

VERB

garments.

NOUN

prt

cc amod

compound
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prep

amod

pobj

Occupational tasks of Electrical Engineers

Advising

VERB

on

ADP

and

CCONJ

designing

VERB

power

NOUN

stations

NOUN

which

PRON

generate,

VERB

transmit

VERB

and

CCONJ

distribute

VERB

electrical

ADJ

power.

NOUN

prep

cc

conj

compound

dobj

nsubj

relcl

conj cc

conj
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dobj

Example of process of extracting tasks from the description of occupational tasks in Mihaylov and
Tijdens (2019) database by Honnibal and Montani (2017) dependency parsing algorithm.
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But what is the output of an occupation that technology
could complement?

Loom operator

Machine operator cloth

Machine operator weaving

Machine operator knitting

Machine operator weaving carpets

Manufacturing

Professional, scientific and technical activities

Arts, entertainment and recreation ∼

JP-H05140844-A Prediction system and control
unit for malweaving in loom: AI
JP-2005095696-A Computerized sewing machine:
software
CN-104420075-A Electro-pattern-sewing machine:
robots
CN-101177848-A Direct-driving single needle in-
dustrial sewing machine control system: software
JP-2020195650-A Sewing system: robots
CN-104345689-A Self-calibration control device
of warp knitting machine yarn guide bar: software
CN-111401629-A Production management algo-
rithm and production management method for
warp knitting workshop of intelligent knitting fac-
tory: software
JP-H05245283-A Needle thread feed quantity
control device for sewing machine: robots

Scheme of micro-occupational titles obtained from Tijdens (2023) database - for Weaving and Knitting
Machine Operators - Unit Group 8151, that with industries (NACE Rev. 2 one-digit) could form these
combinations of occupation-industry pairs. An example of patents’ titles and respective technology that
could augment these occupation-industry pairs.
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What technology is capable of substituting and
complementing?

▶ Technological advances is measured by patents (Mann and
Püttmann (2018); Webb (2019); Dechezleprêtre et al. (2021);
Autor et al. (2022)).

▶ Dictionary-based labels of a broad technological category of
each technology to robots, software, and AI (not exclusively
distinct subset).

▶ Extracting the meaning of description in patent titles and
abstracts for each technology.
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pass
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Most common tasks of the artificial intelligence (AI) technology, 1980-2020. Source: Authors’
elaboration based on Google Patents Public Database 3000 patents random sample

Tasks of robot and software tech.
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Our measure of European-specific automation and
augmentation exposure

Occupational corpus

Patents corpus

BERT

BERT

Dense vectors of

sentence embeding

Dense vectors of

sentence embeding
cosin

e
-
sim

[-1;1]

Summed matches for

occ/ind x patent pairs

of 15% most similar

Figure: Adapted process of creation augmentation/automation exposure of occupational tasks in
ISCO-08 from Autor et al. (2022). Sentence embeddings are obtained by BERT-for-patents model,
fine-tuned on the entire Google patent database by Srebrovic and Yonamine (2020).

I τp,j = 1 if X τ
p,j ≥ λτ

t and zero otherwise;

Autτt =
∑
p∈Pτ

∑
j∈O

I τp,j
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Average exposure to automation and augmentation
technologies in Europe (1990-2020)
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Empirical specification

100 × ln(∆Eij ,t) = βτ
1AugX

τ
ij + βτ

2AutX
τ
j ,t + γi ,t + δj ,t + εij ,t

100 × ln(∆Eij ,t): five-year stacked long-run difference in the total
full-time equivalent employment in the consistent* one-digit NACE
r.2 industry i by three-digit ISCO-08 occupation j cell
AugX τ

ij ,t : IHS transformed augmentation exposure in the
industry-by-occupation cells
AutX τ

j ,t IHS transformed automation exposure in the occupation
cells by each technology (robots, software, and AI), represented by
τ
γi ,t ; δj ,t : fixed effects
Testable hypotheses: βτ

1 > 0 βτ
2 < 0
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The size of reinstatement and replacement of labor in
Europe by each technology

Robot Software AI
(1) (2) (3) (4) (5) (6)

100 × Five-year grouped ∆(Employment)

Augmentation expo-
sure

6.45** 4.21† 8.70*** 6.16† 7.75*** 6.55*

(2.99) (3.03) (3.04) (3.76) (2.85) (3.81)

Automation exposure -2.84 -11.81** -2.95 -13.04** -6.97* -15.73***
(4.16) (5.61) (4.30) (6.62) (4.03) (5.66)

Constant -73.62* 69.19 -106.59* 57.83 -42.39 69.03
(44.58) (57.99) (56.57) (68.29) (43.52) (51.07)

N 2389 2389 2389 2389 2389 2389
R2 0.34 0.65 0.35 0.65 0.35 0.66

Industry × Time FE Yes Yes Yes Yes Yes Yes
Broad Occupations ×
Time FE

No Yes No Yes No Yes

p† < 0.20, p∗ < 0.10, p∗∗ < 0.05, p∗∗∗ < 0.01.
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Manufacturing and non-manufacturing decomposition of
reinstatement and replacement effect of robots technology
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Conditional Correlations between Automation, Augmentations by Robot
Tech. and Employment Growth, (based on Column (2)), 1993-2018
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Manufacturing and non-manufacturing decomposition of
reinstatement and replacement effect of AI technology
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Digitalization, Superstar Firms, and Labor
Dynamics: evidence from France, Germany,
Italy, and Spain
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Motivation and aim

▶ Rising market concentration serves as an independent
explanation for the observed decline in aggregate labor share
(Autor et al., 2017).

▶ Superstar firms are large firms dominating product market
shares (Autor et al., 2020).

▶ Superstar firms:
▶ they have higher productivity (Autor et al., 2017; Ferschli

et al., 2021; Autor et al., 2020; Mertens, 2022)
▶ they pay higher wages (Autor et al., 2020; Mertens, 2022)
▶ they have lower labor share (Autor et al., 2017, 2020)
▶ they employ new (digital) technologies, that accelerate above

trends (Calvino et al., 2018; Calligaris et al., 2018; Ferschli
et al., 2021)

▶ Do these predictions hold in the ’old’ European countries?



Introduction Tasks & Inequalities Automation & Augmentation Superstar firms Conclusions

Motivation and aim

▶ Rising market concentration serves as an independent
explanation for the observed decline in aggregate labor share
(Autor et al., 2017).

▶ Superstar firms are large firms dominating product market
shares (Autor et al., 2020).

▶ Superstar firms:
▶ they have higher productivity (Autor et al., 2017; Ferschli

et al., 2021; Autor et al., 2020; Mertens, 2022)
▶ they pay higher wages (Autor et al., 2020; Mertens, 2022)
▶ they have lower labor share (Autor et al., 2017, 2020)
▶ they employ new (digital) technologies, that accelerate above

trends (Calvino et al., 2018; Calligaris et al., 2018; Ferschli
et al., 2021)

▶ Do these predictions hold in the ’old’ European countries?



Introduction Tasks & Inequalities Automation & Augmentation Superstar firms Conclusions

Labor share: firm level

Si =

(
wL

PY

)
i

=
αL

µi
+

wF

(PY )i
▶ αL is labor elasticity of substitution, µi is the markup, w is wage

rate, L is total labor, F is fixed labor, and PY is nominal value
added (Autor et al., 2017, 2020).

S

α\ µ

TFP
Relationship between the labor share and total factor productivity in the superstar model based on Stiel
and Schiersch (2022).
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Data and empirical specification
▶ France, Germany, Italy, and Spain, 2005-2020
▶ On the industry side: EU-KLEMS (February 2023 release) by

(Bontadini et al., 2023) to construct digitization indicators
inspired by (Ferschli et al., 2021):
▶ IT, CT, Software and R&D share on investments
▶ IT and CT capital deepening

▶ On the firms side: The Competitiveness Research Network of
the EU System of Central Banks (CompNet), 9th vintage
(Joint Distributions)
▶ Labor productivity, wages, and labor share and capital intensity
▶ K/L ratio as control

Ycit = β0 +
4∑

k=1

βkQk+1ci + β5DIci ,t−1 +
5∑

k=1

βk+5(Qk+1ci × DIci ,t−1)+

β10Capital intensityci ,t−1 + αc + γi + ρt + εcit
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Industry concentraction
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Average industrial concentration across aggregated industries in France, Germany, Italy, and Spain,
2005-2020. Aggregated as the weighted average of total employment.
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from the Cobb-Douglas production function (PV05_lnsr_cs).
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Digitalization indicators
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(B) Non-maufacturing industries

The figure shows the evolution of the digitalization indices based on Ferschli et al. (2021) and the
KLEMS database. Investment in information technology ("IT share"), investment in communication
technology ("CT share"), investment in research and development ("RD share"), and software and
databases ("SOFT share"), all measured as a share of non-residential gross fixed capital formation. The
stock of IT capital ("IT deep") and the stock of software and databases ("SOFT deep") are both
relative to hours worked.



Introduction Tasks & Inequalities Automation & Augmentation Superstar firms Conclusions

log (Labor productivity)
(1) (2) (3) (4) (5) (6)

2. Quintile 0.346*** 0.335*** 0.296*** 0.351*** 0.443*** 0.417***
(0.031) (0.056) (0.033) (0.031) (0.017) (0.024)

3. Quintile 0.518*** 0.477** 0.424*** 0.525*** 0.616*** 0.632***
(0.054) (0.089) (0.055) (0.060) (0.038) (0.050)

4. Quintile 0.662*** 0.563*** 0.501*** 0.662*** 0.790*** 0.827***
(0.075) (0.094) (0.060) (0.084) (0.072) (0.096)

5. Quintile 0.849*** 0.721*** 0.657*** 0.822*** 1.035*** 1.035***
(0.084) (0.085) (0.057) (0.101) (0.113) (0.108)

IT sharet-1 CT sharet-1 Soft sharet-1 R&D sharet-1 IT deep t-1 CT deept-1

1. Quintile 0.008* -0.010 -0.044* 0.015 -0.019* -0.030**
(0.003) 0.011) (0.015) (0.010) (0.007) (0.007)

2. Quintile 0.006 -0.006 -0.020*** 0.008 0.006 -0.008
(0.005) (0.013) (0.003) (0.009) (0.003) (0.010)

3. Quintile 0.003 0.005 -0.000 0.003 0.006 0.006
(0.008) (0.015) (0.006) (0.005) (0.006) (0.007)

4. Quintile 0.013 0.027* 0.031* 0.002 0.014 0.022**
(0.007) (0.010) (0.013) (0.005) (0.006) (0.004)

5. Quantile 0.026*** 0.038*** 0.046*** 0.006 0.028 0.028**
(0.003) (0.006) (0.007) (0.011) (0.014) (0.009)

Capital intensity 0.001** 0.001** 0.001** 0.002*** 0.001** 0.001**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 4.022*** 4.021*** 4.093*** 3.864*** 3.945*** 3.912***
(0.039) (0.018) (0.050) (0.075) (0.035) (0.056)

Industry, Country, Year FE Yes Yes Yes Yes Yes Yes

R2 0.785 0.786 0.788 0.799 0.785 0.786
N 13820 13839 13795 13275 13869 13869
Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01

Relationship between quintiles of firm size (defined by mean firms’ revenues) labor productivity and digitalization indicator in France, Germany, Italy,
and Spain, 2005-2020.
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log(Labor share)
(1) (2) (3) (4) (5) (6)

2. Quintile -0.115*** -0.132** -0.077** -0.111*** -0.132** -0.124***
(0.012) (0.028) (0.020) (0.014) (0.033) (0.013)

3. Quintile -0.163*** -0.178** -0.114* -0.159** -0.165* -0.183***
(0.024) (0.039) (0.038) (0.033) (0.069) (0.031)

4. Quintile -0.201*** -0.222** -0.146* -0.198** -0.222* -0.219***
(0.028) (0.050) (0.049) (0.037) (0.080) (0.032)

5. Quintile -0.237*** -0.239** -0.162* -0.233** -0.296 -0.278**
(0.038) (0.049) (0.060) (0.055) (0.128) (0.071)

IT sharet-1 CT sharet-1 Soft sharet-1 R&D sharet-1 IT deep t-1 CT deept-1

1. Quintile -0.010 -0.009 0.025 -0.001 0.001 0.002
(0.006) (0.007) (0.012) (0.005) (0.009) (0.003)

2. Quintile -0.006* -0.002 0.008 -0.004 -0.004 -0.001
(0.002) (0.001) (0.008) (0.004) (0.003) (0.003)

3.Quintile 0.002 -0.003 0.002 -0.003** 0.000 -0.004
(0.003) (0.002) (0.007) (0.001) (0.004) (0.003)

4.Quintile -0.001 -0.001 -0.000 -0.002 -0.005 -0.004
(0.002) (0.004) (0.010) (0.002) (0.007) (0.002)

5.Quintile -0.005 -0.008 -0.010 -0.002 -0.015 -0.011
(0.006) (0.007) (0.009) (0.005) (0.016) (0.011)

Capital intensity -0.000** -0.000* -0.000** -0.000** -0.000** -0.000**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.560*** 0.592*** 0.514*** 0.581*** 0.561*** 0.575***
(0.015) (0.015) (0.031) (0.017) (0.038) (0.019)

Industry, Country, Year FE Yes Yes Yes Yes Yes Yes

R2 0.534 0.533 0.536 0.515 0.534 0.533
N 13820 13839 13795 13275 13869 13869
Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01

Relationship between quintiles of firm size (defined by mean firms’ revenues) labor share and digitalization indicator in France, Germany, Italy, and
Spain, 2005-2020.
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Conclusions (a)

▶ In France tide lifts all boats (across education) but the wage
distribution still witnessed a wage polarization between
10/90th percentile; in Germany wage polarization by both
increase in educational differentials and significant wage
declines for the least educated workers.

▶ Empirically parametrized the task-polarization model in a
reduced form (wages, employment, task displacement) always
significant (exemp. France wages).

▶ Fully specified task-polarization model (with productivity
gains) documents insignificant relationship.

▶ Future researchers: assess robustness using French
administrative data (e.g. DADS), expand study to include
more countries, and construct a European-specific
technological frontier, explore factors of wage rigities.
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Conclusions (b)
▶ Contributed to the empirical literature by examining

labor-complementing and labor-substituting effects of
technology on employment changes simultaneously.

▶ Created an objective measure of exposure to automation and
augmentation to robots, software and AI for ISCO-08
occupations using text analysis techniques.

▶ Revealed a moderate positive correlation between automation
and augmentation exposure across occupations, similar to
findings in the US.

▶ Occupations with higher exposure to automation than
augmentation tended to experience declines in employment,
while those with higher augmentation exposure saw higher
employment growth.

▶ Future researchers: explore impact on wages and more
countries, classifying technologies based on ground truth
descriptions or functions.
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Conclusions (c)
▶ Explored whether the mean function of labor share declines in

a non-linear manner with increasing TFP towards superstar
firms; found evidence supporting fixed-cost mechanism among
firms, especially in non-manufacturing industries: good for EU
antitrust.

▶ Between and with-in variation industries observed positive
association between average industry concentration and labor
productivity and wages, while negative association with labor
share.

▶ Estimates of digitalization impact indicate significant
acceleration of productivity and wages for firms in the fourth
and fifth quintiles of firm size distribution; but no significant
impact found on labor share declines.

▶ Future researchers: identify the fixed-costs mechanism by
industry, explore the potential implications of emerging
technologies, such as AI, focus on local labor market.
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Thank you for your attention!
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Some consequences for wages
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Some consequences for wage distributions
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Labelling keywords of technology

▶ Robots [robot*∨mechatroni(c|cs)∨cyber-
physical∨system∨computer∨vision∨control systems∨sensor]

▶ Software [software∨algorithm∨computer program∨data
structure]

▶ Artificial Intelligence [artificial intelligence∨machine
learning∨neural network∨deep learning]

Back to ideas.
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Manufacturing and non-manufacturing decomposition of
reinstatement and replacement effect of software technology
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