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Labor share decline

Two compelling hypotheses:

> Automation (Acemoglu and Restrepo, 20182, 2022)

> Increasing market concentration (Autor et al., 2017, 2020)
Other hypotheses:

» Offshoring (Feenstra and Hanson, 1999)

» Compositional factors (Fortin and Lemieux, 1997)

» Extensive capital accumulation (Piketty and Zucman, 2014)
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Figure displays labor share decline, increase in the skill premium of college to high school workers, and
the increase of patents share that are classified as automation ones. The US economy 1960-2012.
Source: Authors’ illustration based on Feenstra et al. (2015)’s (Panel A); Autor (2014)'s (Panel B);
Mann and Piittmann (2018)’s (Panel C) data.
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First Aim: Empirically investigate the impact of automation
within the task-based framework in France and Germany,
building on the framework created by

).
Second Aim: Explore both effects of labor-automation and
labor-augmentation technologies simultaneously in the
European labor market, filling the gap left by existing research
predominantly centered around the US ( )-

Third Aim: Examine the implications of increasing market
concentration on labor share, productivity, and wages,
particularly focusing on 'old’ European countries and superstar

firms ( , ).
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Structure of the dissertation

Tasks, Automation, and Inequalities in France and Germany

Impact of Automation and Augmentation Technologies on Employment

Digitalization, Superstar Firms, and Labor Dynamics
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Tasks, Automation, and Inequalities in
France and Germany
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Inequalities over last five decades surged, predominantly caused
by negative shift towards labor ( )
Technological change is the most plausible explanation:

» Skill-biased technological change ( )

» Task-polarization model ( )
In the US, the changes in automation technologies can explain
50-70% of the change in wage structure (

)

Have automation technologies in Europe caused labor market
polarization as in the US?
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Some consequences for wages

Real Log Hourly Wages for Full-Time Real Log Hourly Wagaes for Full-Time Full-Year Workers
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Composition adjusted real wages for full-time workers, women, in France and Germany, Source: FQP
survey (wave 1977, 1985, 1993, 2003, 2015) and SIAB (Version 7521 v1).

- Wages for men.
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Some consequences for wage distributions
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Composition adjusted real wages for full-time workers, women, in France and Germany, Source: FQP
survey (wave 1977, 1985, 1993, 2003, 2015) and SIAB (Version 7521 v1).
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Task-polarization model

Yy = (fA'y_ly(i)Axldi>AAl

Cost of production

Task
index, i
N

Allocated to Capital Allocated to Labor

Equilibrium allocation of tasks to capital and labor in production based on the Acemoglu and Restrepo
(2018b) and Acemoglu and Restrepo (2020).
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Cost of production

"Automation technologies"

Task
N index, i

Allocated to Capital Allocated to Labor

Equilibrium allocation of tasks to capital and labor in production based on the
) and ).
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Empirical evidence on the race between the man and

machine
Real income (n=33) Net employment (n=89)
0.8 0.84
0.64 0.6
0.44 0.44
0.2 021
00l - - [ 00/
supg)ort depénds nosu‘:port weak supbort depénds nosubport weak

Authors’ illustration based on Hotte et al. (2022)'s meta-analysis
Results systematically differ at firm-level and industry-level (Guarascio et al.,
2024; Jurkat et al., 2023).
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EU-KLEMS database:
» Covers 33 industries from 1985 to 2015.

» Includes labor share, value added, and employment data.
Complemented with US industry-level technology proxies from
):
> Average change in dedicated machinery and software (orig.

BEA).
» Adjusted penetration of robots (orig IFR).
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Institut National de la Statistique et des Etudes Economiques
(INSEE)
(i.) Formation Qualification Professionnelle (FQP) and (ii.)
Survey and Enquéte Emploi (EE, EEC):

» Period (i.): 1977, 1985, 2003, 2014-2015.

> Period (ii.): 1977-2015.

» Demographic Groups: 60.
Demographic groups characteristics:

» Gender.

» Age: Three age cells.

» Education: Four education cells.

» Nationality: Four consistent nationality cells (French,

European, African, and others).

Occupational routine task intensities (RTI) are taken from

).
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Institut fiir Arbeitsmarkt und Berufsforschung (IAB)
Sample of Integrated Market Biographies (SIAB) and auxiliary
Employment History Data (BEH):
» Period (ii.): 1985-2016.
» Demographic Groups: 132.
Demographic groups characteristics:

» Gender.

» Grouped education into five education cells.

» Grouped nationality into four groups (Germans, Western
Europeans, Eastern Europeans, and others).

» Grouped age into five age cells.

Occupational routine task intensities (RTI) are taken from

)-
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Empirical mapping:
The common expansion of output, dIny, will be absorbed by the
constant term.
The industry shifters term 3., wé, - dIn ; will be parametrized by group
g's exposure to changes in industry (log) value added shares.

The third term, dIn Ag, will be parametrized as in the SBTC literature.
Assuming:

A—1 -

Td In Ag = Oledu(g) + VYgender(g) + Vg
where v, is an unobserved component, and creqy(g) and Ygender(g) Will be
absorbed by the dummies for education levels and gender.

The key explanatory variable is a measure of direct
 Yier Wy - dInTge.
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L t
Task displacementg’ direct _ g Waic - ﬂ ( dlIns® °)
IEI wiC

Wgic, is the share of wages earned by group g workers in

industry i and country c relative to their total earnings.
R
W . . . . .
= is the share of wages earned in routine occupations by

group g, industry i, and country c relative to all wages earned
in routine occupations in industry i and country c.

L to - . . .
—dIns®" is the automation drive labor share decline
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Percent decline industry's labor share, 1985-2015

France
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Percent decline in industry labor shares (in blue/dark) and automation-driven labor share decline (in
orange/light), 1985-2015. Source: Author’s elaboration based on data from the EU-KLEMS and

) databases.
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France
A. Labor share and robot B. Labor share and specialized software C. Labor share and automation
adoption, 1985-2015 and dedicated machinery, 1985-2015 driven-deciines, 1985-2015
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Log of one plus adjusted penetration Change in share of specialized software services services ser Automation-driven declines
of robots and dedicated machinery services in industry labor shares (%)

Relationship between automation technologies and changes in industry labor shares, France, 1985-2015.
Source: Author'’s elaboration based on data from the EU-KLEMS and Acemoglu and Restrepo (2022
databases.
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Change in hourly wages, 1985-2015

Superstar firms
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Change in hourly wages and task displacement measure, constructed base on the US automation

task displacement based
on US automation driven labor share declines (%), 1985-2015
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frontier, 1985-2015. Source: Authors’ elaboration based on EE, EEC, FQP, EU-KLEMS, Acemoglu and

Restrepo (2022)’s databases.
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Change in employment/population ratio (%), 1985-2015

France
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task displacement based
on US automation driven labor share declines (%), 1985-2015

Change in employment-to-population ratio and task displacement measure, constructed base on the US
automation frontier, 1985-2015. Source: Authors’ elaboration based on EE, EEC, FQP, EU-KLEMS,
Acemoglu and Restrepo (2022)’s databases.
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Change in hourly wages Change in employment-to-population

1985-2015 1985-2015
Panel A

Task displacement -0.001 -0.072
(0.005) (0.045)

Exposure to industry change in value added 0.047 0.124
(0.071) (0.212)

Industry shifters -25.089*** 3.439
(8.658) (29.094)

Education, gender dummies v v

N 60 60

R? 0.288 0.271

Panel B

Task displacement -0.031 -1.368*
(0.105) (0.787)

Exposure to industry change in value added 0.047 0.129
(0.071) (0.212)

Industry shifters -25.089*** 3.317
(8.658) (29.12)

Education, gender dummies v v

N 60 60

R? 0.288 0.272

Task displacement and changes in real hourly wages and employment-to-population ratio, France, 1985-2015. Panel A reports
results for parametrized measure of task displacement based on observed labor share declines. Panel B reports results for
parametrized measure of task displ. based on ion-driven labor share declines based on the US’ technological frontier.
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Percent decline industry's labor share, 1985-2015

Germany
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Percent decline in industry labor shares (in blue/dark) and automation-driven labor share decline (in
orange/light), 1985-2015. Source: Authors’ elaboration based on data from the EU-KLEMS and

Acemoglu and Restrepo (2022) databases.



Tasks & Inequalities
000000000000 000000e000

Germany
A. Labor share and robot B. Labor share and specialized software C. Labor share and automation
adoption, 19852015 and dedicated machinery, 1985-2015 driven-declines, 1985-2015
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Relationship between automation technologies and changes in industry labor shares, Germany,
1985-2015. Source: Authors’ elaboration based on data from the EU-KLEMS and Acemoglu and
Restrepo (2022) databases.
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Change in dally wages, 1985-2015
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task displacement based
on US automation driven labor share declines (%), 1985-2015

Change in hourly wages and task displacement measure, constructed base on the US automation
frontier, 1985-2015. Source: Authors’ elaboration based on SIAB (Version 7521 v1), EU-KLEMS,
Acemoglu and Restrepo (2022)'s databases.
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Change in population ratio (%) , 1985-2015
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Change in employment-to-population ratio and task displacement measure, constructed base on the US
automation frontier, 1985-2015. Source: Authors’ elaboration based on SIAB (Version 7521 v1),
EU-KLEMS, Acemoglu and Restrepo (2022)'s databases.
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Change in hourly wages Change in employment-to-population

1985-2015 1985-2015
Panel A
Task displacement 0.774 1.046
(0.629) (5.723)
Exposure to industry change in value added -0.825 417.531
(86.979) (528.861)
Industry shifters 2.461 2.992
(4.889) (26.630)
Education, gender dummies v v
N 132 132
R? 0.486 0.617
Panel B
Task displacement 0.336 -3.020
(0.528) (3.491)
Exposure to industry change in value added -44.979 148.951
(67.997) (495.223)
Industry shifters 0.571 (0.615)
(4.216) (26.487)
Education, gender dummies v v
N 132 132
R2 0.482 0.622

Task displacement and changes in real hourly wages and employment-to-population ratio, Germany, 1985-2015. Panel A reports
results for parametrized measure of task displacement based on observed labor share declines. Panel B reports results for

parametrized measure of task displ based on

-driven labor share declines based on the US technological frontier.
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Impact of Automation and Augmentation
Technologies on Employment in Europe
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Automation may disrupt labor markets:
» Displacement (automation) effect
> Reinstatement (augmentation) effect

The net effect on employment is an empirical question (
We stand on the shoulders of giants (literally):
» Literature considering both effects simultaneously is scarce

( )

» Europe is not in the scope of interest. Why?

...by applying existing ideas not transferring previous results to
the European context.
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Automation (displacing) technologies are those that replace
input of job tasks ( ).
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Automation (displacing) technologies are those that replace
input of job tasks ( ).

Augmentation (reinstating) technologies are those that
improve the capabilities, quality, or utility of the output of
occupations ( ).

Different technologies (robots, software, and Al) have a
different impact on employment caused by different exposure
caused by the different nature of these technologies (

))-
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We identify what tasks humans and technology perform
...and measure to what extent these input tasks overlap
(automation).
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We identify what tasks humans and technology perform
...and measure to what extent these input tasks overlap
(automation).

We identify what is the final output that technology
potentially complements

. and measure how the final output and technology are
‘close’ to each other (augmentation).
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Weawing and Kitting Machine
Operators - Unit Group 8152
ISCO 08: Setting up and
operating batteries of automatic,
link-type knitting machines to
knit garments of specified pattern
and design, Threading yarn,
thread and fabric through guides,
needles and rollers of machines
for weaving, knitting or other
processing...

Electrical Engineers - Unit
Group 2151 ISCO 08: Advising
on and designing power stations
and systems which generate,
transmit and distribute electrical
power, Supervising, controlling
and monitoring the operation of
electrical generation, transmission
and distribution systems,
Advising on and designing
systems for electrical motors,
electrical traction...
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On the technology side: Google Patents Public database
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On the technology side: Google Patents Public database

On the workers side: Description of task in the cleaned
description of tasks based on ISCO-08 by

) and occupational microtitles by
and merged EU-LFS since 1993 to 2017 for Germany, the
United Kingdom, France, Italy, and Spain
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Occupational tasks of Weawing and Kitting Machine Operators

Occupational tasks of Electrical Engineers

Example of process of extracting tasks from the description of occupational tasks in
) database by ) dependency parsing algorithm.
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Loom operator | ————————{ Manufacturing JP-H05140844-A Prediction system and control

unit for malweaving in loom: Al
JP-2005095696-A Computerized sewing machine:
software

[Machine operator cloth|——{ Professional, scientific and technical activities CN-104420075-A Electro-pattern-sewing machine:

robots

CN-101177848-A Direct-driving single needle in-

dustrial sewing machine control system: software

JP-2020195650-A Sewing system: robots

CN-104345689-A Self-calibration control device

of warp knitting machine yarn guide bar: software

CN-111401629-A Production management algo-

Machine operator knitting rithm and production management method for
warp knitting workshop of intelligent knitting fac-

tory: software

JP-H05245283-A Needle thread feed quantity

Nachine oparator waaving carpets control device for sewing machine: robots

‘ Machine operator weaving }—v{ Arts, entertainment and recreation

Scheme of micro-occupational titles obtained from ) database - for Weaving and Knitting
Machine Operators - Unit Group 8151, that with industries (NACE Rev. 2 one-digit) could form these
combinations of occupation-industry pairs. An example of patents’ titles and respective technology that
could augment these occupation-industry pairs.
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Technological advances is measured by patents (
); ); )i
).
Dictionary-based labels of a broad technological category of
each technology to robots, software, and Al (not exclusively
distinct subset).

Extracting the meaning of description in patent titles and
abstracts for each technology.
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Most common tasks of the artificial intelligence (Al) technology, 1980-2020. Source: Authors’
elaboration based on Google Patents Public Database 3000 patents random sample
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Occupational corpus Dense vectors of

sentence embeding

&—» et | —> T —

Patents corpus Dense vectors of

\ - sentence embeding
Wr—— | s | — HETHE—

: Adapted process of creation augmentation/automation exposure of occupational tasks in
1ISCO-08 from ). Sentence embeddings are obtained by BERT- for—patents model,
fine-tuned on the entire Google patent database by

Summed matches for

oce/ind x patent pairs

[Ti1-] wms - outsoo

of 15% most similar
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Average exposure to automation and augmentation
technologies in Europe (1990-2020)

Percentiles of augmentation exposure
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100 x In(AEj;,) = BT AugXj + B3 AutXy + i + 0y, + e

100 x In(AE;; +): five-year stacked long-run difference in the total
full-time equivalent employment in the consistent* one-digit NACE
r.2 industry i by three-digit ISCO-08 occupation j cell

AugX; IHS transformed augmentation exposure in the
industry-by-occupation cells

AutX], IHS transformed automation exposure in the occupation
cells by each technology (robots, software, and Al), represented by
.

Yit; 0j.¢: fixed effects
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Robot Software Al

L 2 ®3) 4 (5) (6)

Augmentation expo-
sure

Automation exposure

100 x Five-year grouped A(Employment)
6.45%* 421t 870%* 6160  7.75%**  6.55*

(2.99)  (3.03)  (3.04) (376) (285  (3.81)

284 -11.81%*% 2,05  -13.04%%  _6.97% -15.73%%*
(416)  (5.61)  (430)  (6.62)  (4.03)  (5.66)

Constant -73.62*  69.19  -106.59*  57.83 -42.39 69.03
(44.58) (57.99) (56.57)  (68.29) (43.52) (51.07)
N 2389 2389 2389 2389 2389 2389
R? 0.34 0.65 0.35 0.65 0.35 0.66
Industry x Time FE Yes Yes Yes Yes Yes Yes
Broad Occupations x  No Yes No Yes No Yes

Time FE

pt <020, p* < 0.10, p** < 0.05, p*** < 0.01.
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Manufacturing and non-manufacturing decomposition of
reinstatement and replacement effect of robots technology
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Conditional Correlations between Automation, Augmentations by Robot
Tech. and Employment Growth, (based on Column (2)), 1993-2018
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Manufacturing and non-manufacturing decomposition of
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Digitalization, Superstar Firms, and Labor
Dynamics: evidence from France, Germany,
Italy, and Spain
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Rising market concentration serves as an independent
explanation for the observed decline in aggregate labor share
( ).
Superstar firms are large firms dominating product market
shares ( )-
Superstar firms:

» they have higher productivity ( ;

; ; )

» they pay higher wages ( ; )

» they have lower labor share (

» they employ new (digital) technologles that accelerate above

trends ( : :

)
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Rising market concentration serves as an independent
explanation for the observed decline in aggregate labor share
( ).
Superstar firms are large firms dominating product market
shares ( )-
Superstar firms:

» they have higher productivity ( ;

; ; )

» they pay higher wages ( ; )

» they have lower labor share (

» they employ new (digital) technologles that accelerate above

trends ( : :

)

Do these predictions hold in the 'old’ European countries?
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PY ; i (PY);
ay is labor elasticity of substitution, p; is the markup, w is wage

rate, L is total labor, F is fixed labor, and PY is nominal value

added ( , ).

TFP

Relationship between the labor share and total factor productivity in the superstar model based on
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France, Germany, Italy, and Spain, 2005-2020

On the industry side: EU-KLEMS (February 2023 release) by
) to construct digitization indicators
inspired by ( :
» IT, CT, Software and R&D share on investments
» IT and CT capital deepening
On the firms side: The Competitiveness Research Network of
the EU System of Central Banks (CompNet), 9th vintage
(Joint Distributions)
» Labor productivity, wages, and labor share and capital intensity
» K/L ratio as control

4 5
Yair = Bo+ Y BicQusici + BsDleie—1+ Y Brrs(Qustci X Dleje—1)+
k=1 k=1

BroCapital intensityc; 1 + cc + i + pr + it
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Average industrial concentration across aggregated industries in France, Germany, Italy, and Spain,

2005-2020. Aggregated as the weighted average of total employment.
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Labor Share and Average Industry Concentration
Each dot is a industry-year observation
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Average industrial concentration and labor share across all industries (C-N, NACE Rev. 2) in France,
Germany, Italy, and Spain, 2000-2020.
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Adjusted Predictions of Labor Share (95% Cl)

All industries
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Mean function of labor share and total factor productivity in France, Germany, Italy, and Spain, 2020.
All variables are taken from CompNet 9th vintage. Labor share is measured as nominal labor cost over
nominal value added (LRO1 lc_va mn). Total factor productivity is log transformed Solow residual
from the Cobb-Douglas production function (PV05_Insr_cs).
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(A) Manufacturing industries (B) Non-maufacturing industries
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The figure shows the evolution of the digitalization indices based on ) and the

KLEMS database. Investment in information technology ("IT share"), investment in communication
technology ("CT share"), investment in research and development ("RD share"), and software and
databases ("SOFT share"), all measured as a share of non-residential gross fixed capital formation. The
stock of IT capital ("IT deep") and the stock of software and databases ("SOFT deep") are both
relative to hours worked.
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log (Labor productivity)

(1) (2 ©] (4) (5) (6)
2. Quintile 0.346%** 0.335%** 0.296%** 0.351%** 0.443%** 0.417%**
(0.031) (0.056) (0.033) (0.031) (0.017) (0.024)
3. Quintile 0.518*** 0.477%* 0.424*** 0.525%** 0.616%** 0.632%**
(0.054) (0.089) (0.055) (0.060) (0.038) (0.050)
4. Quintile 0.662*%**  0.563*** 0.501%** 0.662%** 0.790%**  0.827%**
(0.075) (0.094) (0.060) (0.084) (0.072) (0.096)
5. Quintile 0.849%** 0.721%** 0.657*** 0.822%** 1.035%** 1.035%**
(0.084) (0.085) (0.057) (0.101) (0.113) (0.108)
IT sharepy CT sharer; Soft share.; R&D share; IT deep .y CT deepes
1. Quintile 0.008* -0.010 -0.044* 0.015 -0.019* -0.030**
(0.003) 0.011) (0.015) (0.010) (0.007) (0.007)
2. Quintile 0.006 -0.006 -0.020%** 0.008 0.006 -0.008
(0.005) (0.013) (0.003) (0.009) (0.003) (0.010)
3. Quintile 0.003 0.005 -0.000 0.003 0.006 0.006
(0.008) (0.015) (0.006) (0.005) (0.006) (0.007)
4. Quintile 0.013 0.027* 0.031* 0.002 0.014 0.022**
(0.007) (0.010) (0.013) (0.005) (0.006) (0.004)
5. Quantile 0.026%**  0.038*** 0.046%** 0.006 0.028 0.028**
(0.003) (0.006) (0.007) (0.011) (0.014) (0.009)
Capital intensity 0.001** 0.001** 0.001** 0.002%** 0.001** 0.001**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Constant 4.022%** 4.021%** 4.003%** 3.864%** 3.045%** 3.912%**
(0.039) (0.018) (0.050) (0.075) (0.035) (0.056)
Industry, Country, Year FE Yes Yes Yes Yes Yes Yes
R? 0.785 0.786 0.788 0.799 0.785 0.786
N 13820 13839 13795 13275 13869 13869

Standard errors in parentheses

* p<0.10, ¥ p < 0,05, ¥** p<0.01

Relationship between quintiles of firm size (defined by mean firms’ revenues) labor productivity and digitalization indicator in France, Germany, Italy,

and Spain, 2005-2020.
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log(Labor share)

@) @ [©] ) (5) (6)
2. Quintile -0.115%** -0.132%* -0.077%* -0.111%** -0.132%* -0.124%**
(0.012) (0.028) (0.020) (0.014) (0.033) (0.013)
3. Quintile -0.163%** -0.178%* -0.114* -0.159%* -0.165* -0.183%**
(0.024) (0.039) (0.038) (0.033) (0.069) (0.031)
4. Quintile -0.201%** -0.222%* -0.146* -0.198%* -0.222*% -0.219%**
(0.028) (0.050) (0.049) (0.037) (0.080) (0.032)
5. Quintile -0.237%** -0.239%* -0.162* -0.233%* -0.296 -0.278%*
(0.038) (0.049) (0.060) (0.055) (0.128) (0.071)
IT share.; CT sharep.; Soft share,; R&D share.; IT deep 1 CT deept
1. Quintile -0.010 -0.009 0.025 -0.001 0.001 0.002
(0.006)  (0.007) (0.012) (0.005) (0.009)  (0.003)
2. Quintile -0.006* -0.002 0.008 -0.004 -0.004 -0.001
(0.002) (0.001) (0.008) (0.004) (0.003) (0.003)
3.Quintile 0.002 -0.003 0.002 -0.003** 0.000 -0.004
(0.003) (0.002) (0.007) (0.001) (0.004) (0.003)
4.Quintile -0.001 -0.001 -0.000 -0.002 -0.005 -0.004
(0.002) (0.004) (0.010) (0.002) (0.007) (0.002)
5.Quintile -0.005 -0.008 -0.010 -0.002 -0.015 -0.011
(0.006) (0.007) (0.009) (0.005) (0.016) (0.011)
Capital intensity -0.000%* -0.000* -0.000%* -0.000%* -0.000%* -0.000%*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Constant 0.560*** 0.592%+* 0.514%** 0.581%** 0.561%** 0.575%**
(0.015) (0.015) (0.031) (0.017) (0.038) (0.019)
Industry, Country, Year FE Yes Yes Yes Yes Yes Yes
R? 0.534 0.533 0.536 0.515 0.534 0.533
N 13820 13839 13795 13275 13869 13869

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Relationship between quintiles of firm size (defined by mean firms’ revenues) labor share and digitalization indicator in France, Germany, Italy, and

pain, 2005-202(
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In France tide lifts all boats (across education) but the wage
distribution still witnessed a wage polarization between
10/90th percentile; in Germany wage polarization by both
increase in educational differentials and significant wage
declines for the least educated workers.

Empirically parametrized the task-polarization model in a
reduced form (wages, employment, task displacement) always
significant (exemp. France wages).

Fully specified task-polarization model (with productivity
gains) documents insignificant relationship.

Future researchers: assess robustness using French
administrative data (e.g. DADS), expand study to include
more countries, and construct a European-specific
technological frontier, explore factors of wage rigities.
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Contributed to the empirical literature by examining
labor-complementing and labor-substituting effects of
technology on employment changes simultaneously.

Created an objective measure of exposure to automation and
augmentation to robots, software and Al for ISCO-08
occupations using text analysis techniques.

Revealed a moderate positive correlation between automation
and augmentation exposure across occupations, similar to
findings in the US.

Occupations with higher exposure to automation than
augmentation tended to experience declines in employment,
while those with higher augmentation exposure saw higher
employment growth.

Future researchers: explore impact on wages and more
countries, classifying technologies based on ground truth
descriptions or functions.
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Explored whether the mean function of labor share declines in
a non-linear manner with increasing TFP towards superstar
firms; found evidence supporting fixed-cost mechanism among
firms, especially in non-manufacturing industries: good for EU
antitrust.

Between and with-in variation industries observed positive
association between average industry concentration and labor
productivity and wages, while negative association with labor
share.

Estimates of digitalization impact indicate significant
acceleration of productivity and wages for firms in the fourth
and fifth quintiles of firm size distribution; but no significant
impact found on labor share declines.

Future researchers: identify the fixed-costs mechanism by
industry, explore the potential implications of emerging
technologies, such as Al, focus on local labor market.
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Thank you for your attention!
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Some consequences for wages
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survey (wave 1977, 1985, 1993, 2003, 2015) and SIAB (Version 7521 v1).
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Some consequences for wage distributions
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Composition adjusted real wages for full-time workers, men, in France and Germany, Source: FQP
survey (wave 1977, 1985, 1993, 2003, 2015) and SIAB (Version 7521 v1).
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Labor share, 1970-2020, France

Agriculture, Mining Manufacturing Construction and Real Estate
75 45
g g4
[ L 3
ki ® 3
85 25
T T T T . T T T T : . T T T T T . T
1970 1980 1990 2000 2010 2020 1970 1980 1990 2000 2010 2020 1970 1980 1990 2000 2010 2020
year year year
Trade and Retail Transportation and Storage Financial and Professional Services
75 85
g £
[ 25
ki 87
85 85
T . T T : : T T T T T T T T T T . T
1970 1980 1990 2000 2010 2020 1970 1980 1990 2000 2010 2020 1970 1980 1990 2000 2010 2020
year year year

Education and Health Services

”\\/\

Labor share

Cultural and Entertainment Services

9
85
8

Accommodation and Food Services
1

Labor share

T T T T T T
1970 1980 1990 2000 2010 2020
vear

T T
1970 1980

T T
1990 2000 2010 2020
year

T T T T T T
1970 1980 1990 2000 2010 2020
year

Labor share, nine macro sectors, 1970-2020, France. Source: EU-KLEMS.



Labor share

Labor share

Labor share

[e]e]e]e] ]

Labor share, 1970-2020, Germany
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Robots [robot*Vmechatroni(c|cs)Vcyber-
physicalVsystemVcomputer\/visionVcontrol systems\/sensor]
Software [softwareValgorithmVcomputer program\Vdata
structure]

Artificial Intelligence [artificial intelligenceVmachine
learningVneural networkVdeep learning]
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Manufacturing and non-manufacturing decomposition of
reinstatement and replacement effect of software technology
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Mean Log Labor Productivity along Size Distribution
Each dot is the bin mean of country observations
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Unconditional bin scatter plot of labor productivity across size quintiles all industries (C-N, NACE Rev.
2) in France, Germany, ltaly, and Spain, 2004-2020.
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Mean Labor Share along Size Distribution
Each dot is the bin mean of country observations

Labor Share
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Unconditional bin scatter plot of labor shares across size quintiles all industries (C-N, NACE Rev. 2) in
France, Germany, Italy, and Spain, 2004-2020.
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